Group I metabotropic glutamate receptor activation produces prolonged epileptiform neuronal synchronization and alters evoked population responses in the hippocampus.

نویسندگان

  • Umit Sayin
  • Paul A Rutecki
چکیده

Glutamate activates a class of receptors coupled to G-proteins that initiate second messenger cascades, change ion channel function, cause release of calcium from intracellular stores, and produce long-term changes in synaptic strength. We used the CA3 region of the adult rat hippocampal slice to evaluate group I metabotropic glutamate receptor (mGluR) activation on epileptiform activity and the population response recorded extracellularly evoked by stratum radiatum stimulation. The selective group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) accelerated the rate of bicuculline-induced interictal discharges at concentrations of 10 and 30 microM. At a concentration of 100 microM, DHPG produced prolonged recurrent discharges that last more than 2s and consisted of an oscillation of the field potential at 2-20 Hz that resembled electrographic seizure activity (ictal). DHPG (100 microM) when bath-applied alone for 30-120 min produced both ictal and interictal discharges that persisted following removal of DHPG from the bathing solution. DHPG (100 microM) reduced the amplitude of the first population spike evoked by stratum radiatum stimulation and changed the relationship of paired evoked population spikes from suppression of the second response relative to the first to facilitation of the second response at interpulse intervals of 15 and 25 ms. To test the possibility that a reduction of the first evoked population spike and loss of inhibition of a second evoked population spike generated prolonged ictal discharges, we used 4-aminopyridine (4-AP 50 microM) to enhance synaptic transmission. 4-AP converted ictal discharges produced by DHPG to an interictal pattern of synchronous activity, reversed the DHPG-induced reduction in the first evoked population spike, and changed paired-pulse facilitation to inhibition. Reversing the changes of evoked population neuronal activity produced by group I mGluR activation favored interictal patterns of epileptiform activity. These results confirm that group I mGluR activation promotes epileptiform activity in the hippocampus and support the hypothesis that a lower efficacy of synaptic transmission favors the generation of prolonged synchronization of neurons that underlies seizures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of group I metabotropic glutamate receptors in the patterning of epileptiform activities in vitro.

In guinea pig hippocampal slices, picrotoxin elicited spontaneous epileptiform bursts 300-550 ms in duration. Additional application of (R,S)-3,5-dihydroxyphenylglycine or (S)-3-hydroxyphenylglycine, agonists specific for group I metabotropic glutamate receptors (mGluRs), or (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a broad-spectrum mGluR agonist, converted picrotoxin-induced intericta...

متن کامل

Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus.

The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were the...

متن کامل

Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges.

Transient stimulation of group I metabotropic glutamate receptors (mGluRs) induces persistent prolonged epileptiform discharges in hippocampal slices via a protein synthesis-dependent process. At present, the signaling process underlying the induction of these epileptiform discharges remains unknown. We examined the possible role of extracellular signal-regulated kinases (ERK1 and ERK2) because...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Group I metabotropic glutamate receptors elicit epileptiform discharges in the hippocampus through PLCbeta1 signaling.

Activation of metabotropic glutamate receptors (mGluRs) produces multiple effects in cortical neurons, resulting in the emergence of network activities including epileptiform discharges. The cellular mechanisms underlying such network responses are largely unknown. We examined the properties of group I mGluR-mediated cellular responses in CA3 neurons and attempted to determine their role in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epilepsy research

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 2003